Robust Experiment Design for System Identification via Semi-Infinite Programming Techniques

نویسندگان

  • Dimitrios Katselis
  • Cristian R. Rojas
  • James S. Welsh
  • Håkan Hjalmarsson
چکیده

Robust optimal experiment design for dynamic system identification is cast as a minmax optimization problem, which is infinite-dimensional. If the input spectrum is discretized (either by considering a Riemmann approximation, or by restricting it to the span of a finite dimensional linear space), this problem falls within the class of semi-infinite convex programs. One approach to this optimization problem of infinite constraints is the so called “scenario approach”, which is based on a probabilistic description of the uncertainty to deliver a finite program that attempts to approximate the optimal solution with a prescribed probability. In this paper, we propose as an alternative an exchange algorithm based on some recent advances in the field of semi-infinite programming to tackle the same problem. This method is compared with the scenario approach both from the aspects of accuracy and computational efficiency. Furthermore, the comparison includes the MATLAB semi-infinite solver fseminf to provide a general palette of methods approximating the robust optimal design problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

A numerical approach for optimal control model of the convex semi-infinite programming

In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.

متن کامل

A conceptual method for solving generalized semi-infinite programming problems via global optimization by exact discontinuous penalization

We consider a generalized semi-infinite programming problem (GSIP) with one semi-infinite constraint where the index set depends on the variable to be minimized. Keeping in mind the integral global optimization method of Zheng & Chew and its modifications we would like to outline theoretical considerations for determining coarse approximations of a solution of (GSIP) via global optimization of ...

متن کامل

A General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming

For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints‎, ‎we define a new gap function that generalizes the definitions of this concept in other articles‎. ‎Then‎, ‎we characterize the efficient‎, ‎weakly efficient‎, ‎and properly efficient solutions of the problem utilizing this new gap function‎. ‎Our results are based on $(Phi,rho)-$invexity‎,...

متن کامل

Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions

 We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015